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A non-linear viscoelastic model is introduced by employing a new formulation where the relaxation time of 
rate processes is directly dependent on the induced deformation state applied to the material. The plastic 
flow of amorphous polymers is considered as a continuous structural change, and the yield phenomenon is 
modelled through the corresponding viscoelastic constitutive equations. All material constants necessary to 
predict the yield stress, the rate and temperature dependence are non-adjustable parameters depending on 
the particular deformation mode. To verify the results of the proposed model, two independent series 
of experiments have been performed on specific polymeric materials, and have been proved to satisfy 
adequately the proposed analysis. © 1997 Elsevier Science Ltd. 
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I N T R O D U C T I O N  

Although many polymeric materials behave as elastic 
solids for small deformations, there is a strain limit 
beyond which most polymers either fracture or undergo 
a continuing plastic deformation, called the yield 
process. This latter phenomenon, which commonly 
occurs in soft metals, lacks an accurate theoretical 
description in the case of amorphous polymers. Accord- 
ing to McClintock and Argon 1, the yield phenomenon of  
solids is only possible if imperfections exist in the 
material. In polycrystalline solids, yield is initiated 
when the existing dislocations start to migrate, once a 
stress field is applied to the solid structure. In amorphous 
polymers, however, the absence of  a specific structure 
also implies the absence of  any kind of  disturbance inside 
the material. This difficulty in envisaging any abrupt 
change in the molecular conformation at the yield point 
of polymeric materials influences the theoretical approach 
to modelling the plastic flow of  such substances as a 
continuous smooth structural change during the yield 
process 2. This approach considers the yield phenomenon 
as a non-linear viscoelastic process where a homogen- 
eous change in the polymeric structure takes place. On 
the other hand, experimental observations have firmly 
established that yield behaviour in polymers initiates at 
localized points by the appearance of  a neck, or is 
accompanied by shear bands, which can occur most 
easily in the plane of the maximum shear stress. These 
facts suggest th e generation of  inhomogeneities on a 

3 molecular basis during the material deformation . The 
induced structural changes at the yield point indicate a 
theoretical approach to treat the plastic behaviour of 
polymers in the context of classical plasticity models, 

* T o  w h o m  c o r r e s p o n d e n c e  s h o u l d  be  a d d r e s s e d  

where a rigid material before yield deforms as an inviscid 
fluid according to some specific flow rules after yield 4-8. 

In this article, the viscoelastic constitutive equations 
will be used where yield and postyield behaviour are 
predicted as a natural consequence of viscoelastic relax- 
ation processes. The non-linear features of these equations 
will be established on a micromechanical molecular model. 
By this treatment, which seems to be analogous to that of 
Eyring 4, the relaxation time is not expressed as a 
function of  stress imposed on the material but depends 
on the state of  deformation. This dependence predicts a 
maximum yield stress at a specific strain usually common 
in polymeric materials, in the range of 5-10%. All 
material constants necessary to predict the yield stress, 
the rate and temperature dependence, and the strain 
softening are not adjustable parameters relying on the 
definite deformation mode. To verify the results of  the 
model presented in this paper, two independent series of 
experiments will be performed on a specific polymeric 
material. The first type of  experiment is based on a pure 
mechanical self-vibrating method for determining the 
viscoelastic parameters of  the tested material. The second 
series of tests constitutes a development of uniaxial 
compression experiments with various rates of deforma- 
tion. The yield behaviour of the material is then fully 
predicted using the viscoelastic parameters as physical 
constants for describing this phenomenon. 

T H E O R E T I C A L  D E V E L O P M E N T  

The plastic flow in polymer solids appears to be funda- 
mentally different from that of metals, because the 
experimental yield stress strongly depends on the rate of 
strain. The dependence of  this stress on the hydrostatic 
pressure and on the temperature environment also 
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highlight some differences which can give the impression 
that the yield phenomenon in polymers is a special case 
of  nonlinear viscoelastic effect. This nonlinearity may 
be the result of lowering the characteristic time of 
relaxation process as the induced strain increases during 
a deformation programme.  This phenomenon has been 
extensively described in previous works by considering 
the shift in relaxation time either by the free volume 
theories, where the strain induces material dilation, or 
in the context of  conformational  entropy models, 
where entropy increase is linked also with the volume 
change 2,9.10 

In the present study we will try to employ a new 
formulation where the relaxation time is directly depend- 
ent on the induced strain under isovolume conditions. 
Such an analysis can apply without any revision even for 
shear deformation,  because yielding is not considered to 
be a consequence of volume dilation. More particularly, 
our formulation takes into account that in the glassy 
state the reference configuration of polymers is an 
isotropic state consisting of randomly oriented molecular 
chains. Each single chain with its end-to-end vector r0 in 
the initial state contains a number  of  rigid links of  
constant length aligned along a random direction b. 
Supposing that each link is embedded in an elastic 
medium, which is constituted from the rest of the 
molecules of  the system, we can assume that under a 
stress field a "pseudo-afline' deformation occurs, result- 
ing in a new direction of vector b. We make use of  the 
'pseudo-affine' model to express the state of orientation 
in the material after the stress is suppressed. This new 
direction that is the result of  intermolecular interactions 
with the neighbouring chains leads to a new distribution 
of the material lines occupied by each link. 

Wu and Van Der Giessen lj have developed the idea of 
the orientation distribution function to describe the 
evolution of a rubber network consisting of a large 
number  of  molecular chains that are initially randomly 
oriented in space. We will take a similar approach,  where 
instead of the affine deformation for each chain we will 
examine only the orientation change of each link. This 
approach is schematically shown in Figure la, where the 
initial uniformly distributed links are forced to orient 
along a mean direction parallel to the major principal axis 
of  macroscopic local strain. The isotropic distribution in 

the undeformed state can be represented by a radial 
arrangement of chain links corresponding to a density 
distribution, n0, equal to 1/47r (Figure lb). After the 
imposition of deformation F a new density distribution, 
n, will be established. In the proximity of a material point 
a sphere of  radius dX will deform in an ellipsoid as 
shown in Figure lc, with a corresponding radius 
dx = F dX. Supposing that the total number  of  links N 
directed around a material point is conserved after the 
deformation. We may then write 12 

n d~2 o 
Nno d~7o = Nn df~ or - (1) 

no d~  

Where d~*o and d~7 are the solid angles in the 
undeformed and deformed states correspondingly. 
Expressing df~0 and dft with respect to ]dx[ and IdX[ 
we obtain 

n d~2 o (Idx['~31 A 3 
n o -  d~- - t,~dx~,/ , 1 -  Y (2) 

where A -  Idxl/IdXl is the stretch ratio, and d is the 
volume change. In the case of  isovolume deformation, J 
is equal to unity and n = A3/4rr. The above relation can 
be applied to every state of  the deformation mode. The 
stretch ratio A is then calculated for each direction as a 
function of the polar coordinate angles and the com- 
ponents of the deformation gradient tensor F. 

Taking into account that the yield phenomenon is 
accompanied by slipping or twinning, which can occur 
most easily in the plane of the maximum shear stress, 
even when a sample is subjected to uniaxial tension or 
compression, we apply the above results considering that 
the shear strain on this plane is 7, and the deformation 
gradient tensor F is given by 

F =  0 1 J = d e t F =  1 (3) 

0 0 

The ratio of  the density distribution can be expressed as 
follows: 

n ~k 3 1 (4) 
t70 [1 ÷ "y • sin2 0 sin 0(? sin 0 2 COS g))] 3/2 

(n) 

F 

(b) 

I1,, 

dX 
F ~ dx=F dX 

,,., © - - - *  < y >  

Figure 1 A single element of an amorphous polymer constituted from rigid links in the unstrained and strained states: (a) isotropic conformation of 
molecular links, (b) schematic representation of uniformly distributed links. (c) deformation of a sphere of radius dX in the proximity of a material 
point 
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The minimum value of this formula is obtained in the 
directions determined by the angles (0 = 7r/2, ~ = 7r/2 + 
½tan-1 (2/3`): 

1 1( 
rlmin = f(3`) = ~ (2 

2 4 ~ 2  )3/2 
_~_ 3 ` 2 ) ( ~ )  -/- 3`./3 -t- 43' 

(5) 
In the following we will make use of this density 

distribution function to express the rate of viscoelastic 
relaxation processes. When a material is subjected to a 
constant strain rate e, a shear stress is developed in a 
certain direction. The isotropic orientation of the rigid 
links is altered, and a new direction of the material lines 
occupied by each link is then determined. The yield point 
is attained as a sequence of molecular jumps governed by 
some kind of activated process. Following the idea of 
Adam and Gibbs 13 that configurational change in glasses 
has a cooperative nature, the relaxation time is given by 
an exponential form of the energy barrier multiplied by 
the minimum number of cooperative links oriented along 
the revealed shear bands: 

/,* AH'  
7. = 7.0 exp k ~ )  (6) 

where AH is the activation energy of the relaxation 
process, n* is the number of links acting cooperatively as 
a unit to make a configurational rearrangement, T is the 
absolute temperature and k is Boltzmann's constant. 
Combining equations (6) and (5) we obtain the relation 

( NA/-/ )) 
T = 7- 0 exp \ ~ - f ( 3 `  (7) 

where n*=  nmin N, with N the total number of links 
contained in the region where cooperation takes place. 
To obtain the exact temperature dependence of the 
above expression we use the concept of configurational 
entropy S to calculate the number of co-operative links 
N: 

N -- NASn (8) 
S 

where NA is Avogadro's number and sn is the entropy of 
a link. In the present study, adopting a procedure 
developed by Hodge 14 for the calculation of configura- 
tional entropy, we have the following expression for the 
temperature dependence of relaxation time 7.: 

T = %  exp(  T(1-AT2/Tf)f(3`) ) (9) 

where T2 is the temperature of zero configurational 
entropy, and Tf is the fictive temperature, which is equal 
to the current temperature in the equilibrium state, while 
in the glassy state it is constant with a value below but 
close to the glass transition temperature Tg. 

The constitutive equation for an isotropic viscoelastic 
solid in the limit of infinitesimal uniaxial deformations is 
given by 

~r(t) = [Ere I + E(t* - ~*) d~ (10) 
- -  ~ X 2  

where E(t) is the viscoelastic tensile stress relaxation 
modulus for a specific axial strain history e(t), and Er is 
the equilibrium or relaxed modulus. 

The variables t* and ~* are reduced times given by two 
integral formulas expressing the non-uniform expansion 
of the viscoelastic timescale induced by the deformation 
processes: 

,* = 7.(0/[' dX = dX (l l) 
J0 7.(x) J0 7.(x) 

Since real polymers comprise various regions where 
molecules perform many modes of motions, a spectrum 
of relaxation times should be used to describe in detail 
every relaxation process. On the other hand, the Kohlraus- 
William-Watts (KWW) equation 15 is also one of the best 
equations to fit relaxation phenomena, especially from 
the solid-like stage up to the transition region of glassy 
polymers. Taking into account this fact, we choose the 
following relation for the relaxation modulus E(t): 

E ( t ) =  E0 exp [ -  ( t )  ~] (12) 

where the parameter /3 is often found to be approxi- 
mately 0.5 for polymers. 

For spatially homogeneous uniaxial deformation, the 
maximum shear strain 3  ̀ of equation (7) is developed 
along the direction of 45 ° from the extensional axes, and 
is directly related to the displacement strain e(t). 

Equations (11) along with equation (9) can be 
integrated for a given strain rate deformation. These 
results are substituted in equation (10) and, via numerical 
calculation stress, ~(t) are determined. 

DETERMINATION OF VISCOELASTIC 
PARAMETERS 

The set of equations (9)-(12) presented above could 
predict the yield stress behaviour of amorphous poly- 
mers, if the physical parameters of these relations have 
been previously determined. To verify these constants, 
independent experiments have been performed based on 
dynamic mechanical spectroscopy. We use a compound 
pendulum (dynamic mechanical analyser (DMA) from 
Du Pont Instruments) to measure the sample modulus 
E' ,  and the energy dissipation E". This instrument 
operates on the compound resonance principle in which 
the sample is vibrated in a unique stress-producing 
geometry. This geometry consists of two sample arms, 
each attached to a rigid base through flexure pivots. The 
pivots function as highly accurate torsional springs with 
near-zero hysteresis in the horizontal direction and high 
rigidity in the vertical direction. When a solid sample 
is mounted between the ends of the sample arms and 
the arms are deflected from the equilibrium position, a 
compound resonance system is formed. The resonant 
frequency is mathematically related to the sample modulus, 
and the decay of the amplitude envelope (expressed as 
'damping') is a measure of the energy dissipation E ' .  The 
instrument electronically displays the sample frequency 
and damping. The whole system is placed in an oven in 
which the rate of temperature rise is controlled. 

Figure 2 shows representative diagrams from the 
electronic device indicating the dependence of the 
resonance frequency and damping on temperature T. 
The storage and loss moduli of the three tested specimens 
are then calculated, following the relative expressions 
furnished in the instruction manual of the dynamic 
analyser, and plotted against temperature in Figure 3. To 
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Figure 2 Representative diagrams from the electronic device for the resonance frequency and damping of the tested specimens with respect to 
temperature 
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Table 1 Material parameters fitted from the experimental results of  
storage moduli and used to predict the stress-strain data of  tested 
specimens 

& E, A h- To 
(MPa) (MPa) T o (K) (K) (K) fl 

ER00 2320 120 10 -2°'6 2880 399 332 0.20 
ER20 2300 100 10 ]9.1 2700 359 295 0.26 
ER40 2000 90 10 ls.o 2400 335 275 0.30 

fit these experimental results we use the relations known as 
the 'Alfrey approximation'16. According to this approach, 
the real and imaginary parts of the complex modulus 
(E', E ' )  are expressed in terms of the relaxation time 
spectrum H(~): 

= H(~) [E"(~)],/~=~ = 2H(~) (13) 

This spectrum can be calculated to a similar degree of 
approximation in terms of the KWW equation given 
from relation (12): 

- r dE(,)]  - V e x p  [- (14) 
Ld 1---Tfi J 

The relaxation time ~- and the equivalent time ~ are 
related to the corresponding temperature from the 
Vogel Fulcher formula as modified by Hodgel4: 

( ATz/Tf) ) J:dl__ = J r  d T  7- = T 0 exp T(1 ( = Tr T "/-r 
- T o  qT 

(15) 

where q is the rate of heating q = dT/dt, ~-r is the 
relaxation time at a reference temperature To, and Tf is 
the fictive temperature which is equal to the current 
temperature in the equilibrium state, while in the glassy 
state it is constant with a value below but close to the 
glass transition temperature Tg. 

Using a programming package known as 'Statistic 
Nonlinearfit' from the computer program Mathematica 
as developed by Wolfram in version 217 , the parameters 
of equations (14) and (15) can be fitted following the 
experimental results of Figure 3. 

RESULTS AND DISCUSSION 

The predictions of the viscoelastic constitutive equations 
in uniaxial compression will now be presented. We will 
consider the isothermal deformation of viscoelastic 
materials where three constant strain rates are applied 
for each tested specimen. 

The viscoelastic materials selected to test the model are 
compounds derived from epoxy resins with various 
amounts of plasticizer. The epoxy used was Epon 828 
with a molecular weight between 370 and 384. The curing 
agent used was triethylene tetramine (TETA), 8% by 
weight of epoxy, and postcuring was done at 100°C 
for 48 h. The polymer was mixed with three different 
amounts of plasticizer (Thiokol LP3 polysulfide): 0, 20 
and 40% by weight of epoxy, corresponding respectively 
to samples ER00, ER20 and ER40. These materials were 
selected because they exhibit similar viscoelastic behav- 
iour differing only in the temperature range where the 
glass transition occurs. In this way we can verify how the 
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Compressive stress strain data for three strain rates of deformation for specimen ER00. Calculated versus experimental results 

yield stress at  a specific t e m p e r a t u r e  T in the glassy state 
is affected by the difference Tg - T. As far as the app l ied  
stress is imposed  at  a t empe ra tu r e  close to the glass 
t rans i t ion ,  the relat ive s l ippage  between the coopera t ive  

units is faci l i ta ted,  resul t ing in a lower  value of  yield 
stress. All  ma te r i a l  pa rame te r s  fitted f rom the d ynamic  
mechanica l  analysis  are summar ized  in Table  1. The plots  
o f  Figure  4 show the co r respondence  between the 
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Compressive stress-strain data for three strain rates of deformation for specimen ER40. Calculated versus experimental results 

experimental results of  E '  and the calculated functions, 
in the range of temperature where the parameters have 
been fitted according to the previous section. Using 
these parameters, as physical constants for the visco- 
elastic behaviour of the tested materials, we calculate 
the imposed compressive stress from the constitutive 
equation (10). This calculation has been carried out 
numerically by using as the relaxation function the 
K WW  equation (12), and the non-linear viscoelastic time 
7- (equation (9)). Based on the concept introduced by this 
equation, the non-linear viscoelasticity is the result of 
strain-induced reduction in relaxation time. The lower- 
ing of  this viscoelastic parameter is accomplished under 
isovolume conditions. This fact suggests that the same 
trend will be valid for any kind of  deformation, without 
any revision in the presented formulation. As far as the 
relaxation function is concerned, the KWW expression is 
the best known equation to fit the glassy stage of  the 
relaxation process, taking into account that real poly- 
mers exhibit many modes of  molecular motion. The 
small value of  the stretch exponential/3, used to fit the 
experimental results, is an accepted value for the glassy 
state of  amorphous polymers. The KWW equation, 
however, is not suitable for describing the response at 
large strain deformations. The polymeric material at this 
stage has passed the transition region and responds as a 
real rubber. The behaviour at this stage of  large 
deformation and the effect of strain hardening will be 
the subject of  a future work. The strain history followed 
for each tested specimen has been executed for three 
different strain rates, and these results are represented by 
the plots of Figures 5-7. As shown by these curves, there 
is a very accurate prediction of the way in which the yield 

stress scales as a function of  rate deformation. Apart 
from this success, however, it is worthwhile to mention 
that all parameters used for the theoretical calculations 
of the stress-strain response have been fitted from a pure 
viscoelastic experiment. We believe that the presented 
model assists previous work, where plasticity and non- 
linear viscoelasticity are not reated as mutually exclusive 
effects but are blended in, proving that the same physics 
is behind these phenomena. 
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